જો $\alpha ,\beta ,\gamma $ એ અનુક્રમે રેખાએ $x, y$ અને $z$ અક્ષો સાથે બનાવેલ ખૂણાઑ છે કે જેથી $2\left( {\frac{{{{\tan }^2}\,\alpha }}{{1 + {{\tan }^2}\,\alpha }} + \frac{{{{\tan }^2}\,\beta }}{{1 + {{\tan }^2}\,\beta }} + \frac{{{{\tan }^2}\,\gamma }}{{1 + {{\tan }^2}\,\gamma }}} \right) = 3\,{\sec ^2}\,\frac{\theta }{2},$ થાય તો $\theta $ ની કિમત મેળવો
$\frac{\pi }{{12}}$
$\frac{\pi }{{10}}$
$\frac{\pi }{{6}}$
$\frac{\pi }{{3}}$
${\sin ^2}\theta + \sin \theta = 2$ નું સમાધાન કરે તેવા $\theta $ નો વ્યાપક ઉકેલ મેળવો.
સમીકરણ $\sin (9 x)+\sin (3 x)=0$ ના અંતરાલ $[0,2 \pi]$ માં ઉકેલની સંખ્યા મેળવો.
$\cos x=\frac{1}{2}$ ઉકેલો.
અંતરાલ $\left(\frac{\pi}{4}, \frac{7 \pi}{4}\right)$ માં $x$ ની એવી કેટલી કિંમતો મળે કે જેથી $14 \operatorname{cosec}^{2} x-2 \sin ^{2} x=21-4 \cos ^{2} x$ થાય?
જો $\tan \theta = - \frac{1}{{\sqrt 3 }}$ અને $\sin \theta = \frac{1}{2}$, $\cos \theta = - \frac{{\sqrt 3 }}{2}$, તો $\theta $ ની કિમત મેળવો.